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Motivation/Objectives: The need to analyze ozone and aerosols together, and the lack of
fundamental information on potentially important chemical processes, provide the motivatior
for this proposed work. The importance of heterogeneous reactions in tropospheric ozone ai
aerosol formation, and their impact on-recursor relationships will be studied through a
multidisciplinary approach which combines modeling and laboratory components. The researc
Is directed towards efforts to significantly enhance our understanding of one of the mos
uncertain areas of atmospheric chemistrg., heterogeneous processes. The combined
laboratory and modeling studies will improve our basic understanding of the chemistry or
aerosol surfaces, will demonstrate and elucidate the interactions and interrelationships betwe
ozone and aerosol processes, will assess whether these processes can alt@rebgr<or
relationships upon which present emission reduction strategies are based, and will provic
needed scientific information regarding linkages between tropospheric ozone and seconda
aerosol abatement. The new laboratory data and the modeling efforts to predict the aeros
composition of both the inorganic and organic fractions, will also be of direct value to aerosol
radiative forcing and climate change studies.

The specific objectives of this study are to

» Evaluate the extent to which heterogeneous chemistry affects the photochemical oxidar
cycle, particularly, tropospheric ozone formation,;

» Conduct laboratory studies on heterogeneous reactions involving VOCs on aerosol surface
and

» Explore the sensitivity of ozone and aerosol composition to changes in precursor emissions ¢
regional scales.
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APPROACH

MODELING LABORATORY

3D STEM-III transport/chemistry/deposition model Spectroscopic and Kinetic Measurements of Heterogeneous
Processes Involving Mineral Dust and Carbonaceous
Dynamics of Aerosol Processes Particles

Combined Kinetics/Thermodynamics Approach Determine Heterogeneous Reaction Probabilities of VOCs,
O3 and O3-precursors for input into Atmospheric Models
New Approach for Secondary Organic Aerosol Partitioning
Study the Effect of Solar Radiation on Reaction and
Sengitivity Analysis and Improved Numerical Methods Adsorption of VOCs
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Observed and model calculated (two-bin
model) NH4*, NO5-and Cl-at Cheju
Island, South Korea. (top panel)

Model calculated aerosol and gas
phase composition for the mean
conditions at Chegju Island, South
Korea. (left panel)
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The calculated distributions of dust and SO, at 15:00 LT March 6, 03:00 LT March 7, 15:00 LT March 7, and
03:00 LT March 8. The isosurfaces of dust (gray, 40 pg/m3), SO, (yellow, 0.65 ppb) and sulfate (green, 1.25
pg/m?) are presented along with the horizontal velocity vectors at 4 km. [Xiao et al., JGR, 102, 28,589-28,612]



The calculated distributions of dust and SO, at 15:00 LT March 6, 03:00 LT March 7, 15:00 LT March 7, and
03:00 LT March 8. The isosurface of dust (40 ugfm3} are shown along with the sulfate distribution (in green)

along the plane of the flight path during PEM West B. Also shown are the streamlines at 1 km (orange).
[Xiao et al., JGR, 102, 28,589-28,612]
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Rs, a measure of the
acidity of the aerosal,
is defined as the ratio
of the total alkaline
cation conc. to the SO4
conc. in the aerosol.



Sensitivity analysis with ADIFOR

Atmospheric Chemistry Model - ACM (FORTRAN or C)
e e i R [Manual intervention (done only once)

[Preprocessing with ADIFOR (automatically)

[Select the sensitivities you need

Executable code

Simulation results Sensitivities

Change global parameters in input files (initial conditions)

Structural and Model changes



Experimental Considerations

® Spectroscopic measurements to
provide both qualitative (what
reactions are possible) and
quantitative information

—Provide mechanistic information on the
molecular level

—Need to have techniques that can detect
gas-phase and surface-bound species

® Kinetic measurements to provide
quantitative information

—Determine reaction probabilities, y

® Provide data as input for global
atmospheric models



Knudsen Cell Reactor for Reaction Probability Measurements
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Measured Mass Spectrometer Signals of NO™ and
NO,” During NO, Reaction with
Hydrated Aluminum Oxide Particles
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NO, Adsorbed on Dehydrated, Rehydrated and
Hydrated Aluminum Oxide
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Experimental Methods
Transmission FT-IR Spectroscopy

(to characterize gas-phase and surface-bound species)
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Uptake of NO2 on Dehydrated

and Rehydrated Aluminum Oxide Particles
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Acetone Adsorbed on Dry Silica Particles
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NO, Adsorbed on Dehydrated Aluminum, Iron,
and Titanium Oxides
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UV/Vis Diffuse Reflectance Spectroscopy
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Reaction probability of NO5 on hydrated
metal oxide particles

Ap, 1s the area of the aperture hole to the QMS
Ag is the geometric area of the reactive surface
Ap N,-N st 08 .
— o I N, is the mass spectrometer signal
AS N r without the reactive surface exposed
N, is the mass spectrometer signal with
the reactive surface exposed
Yo X 10-4
Al,O4 4+1 (o - 10 runs)
F6203 -

TiO, 2+1 (O - 6 runs)
near 3 x 104 at room temperature

Comparison to measurements
made on other particles

vo(carbon black) > vy, (metal oxide) > y,(NaCl)

carbon black: 0.11; Rogaski, Golden, Williams GRL, 24, 381-384 (1997)
carbon black: 0.06; Tabor, Gutzwiller, Rossi JPC, 98, 6172-6186 (1994)

NaCl: < 1075 ; Beichert, Finlayson-Pitts JPC, 100, 15218-15228 (1996)



Reaction Probability

Measured Reaction Probability of Reaction of

NO, with Hydrated Aluminum Oxide Particles
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UV/Vis Diffuse Reflectance
Spectroscopy of Nitrite and Nitrate on
A 1203 from NO, Adsorption
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Directions: The importance of heterogeneous reactions in tropospheric ozone
formation and its impact on Oz- aerosol precursor relationships will be studied using
both box and three-dimensional models. Heterogeneous chemistry effects will be
evaluated initially with a time-dependent multi-phase chemistry box model. A
combined aerosol/gas-phase chemistry model has been developed for this purpose, in
which the detailed multicomponent aerosol dynamics and heterogeneous chemistry on
the aerosol surface are explicitly included. The important heterogeneous processes will
be identified through sensitivity studies. Regional simulations for both the eastern and
western United States using the heterogeneous chemistry based on laboratory and box
model studies will also be performed in order to evaluate these processes under
different aerosol, emissions and ambient conditions. Simulations with and without
aerosol reactions, and for various levels of NO, and VOC emissions will be conducted
to evaluate how the heterogeneous reactions perturb the ozone and secondary aerosol
precursor relationships. The modeling activity will both provide a means to rapidly
evaluate the significance of the new laboratory findings and will help guide the
laboratory studies. Laboratory studies will be directed to those areas which have high
sensitivity and high uncertainty. The experimental methods to be used in the
laboratory studies include Fourier-transform infrared spectroscopy and Knudsen cell
measurements. A molecular level understanding of the mechanism of adsorption and
reaction of atmospheric gases on aerosol surfaces will be obtained from the infrared
data and more quantitative reaction probability data will be obtained from the Knudsen
cell measurements.



