Important science questions regarding heterogeneous
atmospheric chemistry remain

*\WWhat are the reaction products (in the gas and or aerosol phases)?

*How do these chemical processes impact aerosol composition and
properties (e.g., impact water uptake, alter radiative properties, etc.)?

How do they influence gas phase chemical processes (e.g., partitioning of
nitric acid, altering NO,/HO,/O, distributions)?

sUnder what situations are such reactions expected to be important (at
night, in urban environments, upper troposphere, etc.)?

*\What processes restrict or enhance the effectiveness of these reactions
(e.qg., aerosol aging which may include things like surface saturation effects
and surface regeneration effects, etc.)?

*What is the role of H,O, solar light (hv), temperature and reactant
mixtures (carbonyls, NQ, and O, together in the same air mass), etc. in
Increasing/decreasing the importance of heterogeneous reactions on
aerosol surfaces?



A Key Science Issue: Chemistry/Aerosol/Regional
Climate Coupling

Radiative Forcing
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Chemical Role of

THE APPROACH Aerosol Particles in the
Atmosphere

Can change the chemical balance of the

MODELING  ngmmre LABORATORY atmosphere in two ways

(Vicki Gralsian Sk )
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Experimental Considerations

« Spectroscopic measuremento provide both
qualltgtlv_e (vyhat reaptlons are possible) and
guantitative information

— Provide mechanistic information on the molecular level

— Need to have techniques that can detestphasand
surface-bounspecies
Transmission FT-IR Spectroscopy
Diffuse Reflectance UV-vis Spectroscopy
Mass Spectrometry

« Kinetic measurementsto provide quantitative
information
— Determine uptake coefficients (sticking coefficients,

reaction probabilitiesy 1.6 10 ]
Knudsen cell apparatus ]

1.2 10"

* Provide data as input for global atmospheric
models- removal rate of gas-phase species |
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Mass Transfer Coefficient
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Scheme for Aldol Condensation

Reaction on Oxide Particles
(Al ,O4, Fe,0,, TIO,, Cal, and MgO)
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Summary of Combined Laboratory
and Modeling Study

Spectroscopic probes of gas-phase and adsorbed species along with
kinetic measurements provide the necessary information to evaluate
reactions of potential importance in the troposphere

— reaction mechanisms, surface coverage, saturation
— uptake coefficients

Diffusion of gases into powdered samples can have a very significant
effect on the measured uptake coefficient for powdered samples

— multiple collisions amplify the observed uptake
coefficient

Atmospheric implications of uptake measurements determined from bc
model analysis

— heterogeneous pathways are competitive with other
carbonyl loss mechanisms (e.g. reaction with OH radical)

) X-
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Knudsen Cell Data

NO, on ~74 mg Titania
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Role of Adsorbed kD in
Surface Reactions of Potential
Atmospheric Importance

|. Heterogeneous Reaction of NQon SiG,
2NO,(g) + H,0 (8) g HONO (g)+ HNO4(a)

*HONO is produced

HONO is a source of OH radical,

The OH radical drives the daytime

chemistry of the troposphere
*H,0 is a reactant
*HNO, is a surface-bound product

- adsorbed product never fully characterized
until this work

Il. Heterogeneous Reaction of HNQon
Oxide andCaCQO; Particles
HNO4(g) + CaCQ{ CO,(g) + Ca(NQy),+ H,0 (a)

*H,0 is a product (and medium for dissociation)

*Is the reaction limited to the particle surface?



Role of Adsorbed Water
IN Heterogeneous
Atmospheric Chemistry

tropospheric particle
2

dry particle particle with suface particle
adsorbed water immersed in a liquid
water droplet

surface sites surface sites, blocked sites solubility, Ksp
defect sites coadsorption lonic species

Chemistry of atmospheric gases with theame
particle may bedifferent for each of these
conditions



UV/Vis Diffuse Reflectance Spectroscopy of Nitrite
and Nitrate on AlO; from NQ, Adsorption
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Knudsen Cell Reactor

Linear Translat or

TurTbo Pump
_ T .
Exit
——( =+ Aperture® EEE QMS
f -
Leak Valve - Capacitance l
Sample Holders Manometer




Water Dependence-HN@ptake on
CaO
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Reaction of HNG; on CaCQ; at 20% RH
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Water Isotherm at T= 295 K

<
O
k=S
N
5 40 5
=2 _— WAt er Upt ake on Caa®ti cl es
= —4
o = 304 _
O CaCoO,; Particles R
S 82> with HNQat 20% RH | 3
§>> = 20
2 g
= o 15 —2
D ~
= 10
>’ : -1
= CHCK%‘ETZ:Jajg’y/.
— 5 -
O T . O
100

% Rel ati ve Hum di t

o 20 40 60 80
\Y

S Jafe |ouqy



HNO, Uptake (ol ecules cm

HNO, Uptake on CaCQin the Presence of Water - Greater

16
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Upt ake of HND CaCoO and CaO Particl es
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Reaction not limited to surface atoms
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Enhanced Nitric Acid Uptake Kinetics in the Presence of

Adsorbed Water Measured by FT-IR Spectroscopy
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Summary of Results

Spectroscopic probes of gas-phase and adsorbed species along with
kinetic measurements provide the necessary information to evaluate
reactions of potential importance in the troposphere

— stoichiometry
— reaction mechanisms surface coverage, saturation
— uptake coefficients
— Increased water uptake
(potential CCN nuclei)

Diffusion of gases into powdered samples can have a very significan
effect on the measured uptake coefficient for powdered samples

— multiple collisions amplify the observed uptake
coefficient

Atmospheric implications of uptake measurements determined from |
model analysis
— heterogeneous reactions may be a sink for nitric acid and
SO,
— heterogeneous reactions are too slow for N@ have an
effect

—F

DOX-

—« Water plays an important role in heterogeneous reactions of ;BiNO
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Model is Able to Capture Many Important
Observed Features
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Calculated Fine and Coarse Mode Aerosol Distributions In
the Boundary Layer; PEM-WEST B
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Calculated Fine and Coarse Mode Aerosol Distributions in the
Boundary Layer; PEM-WEST B
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INTERACTIONS OF SO, WITH MINERAL AEROSOL CHANGE
SULFATE SIZE DISTRIBUTION AS WELL AS THE CHEMICAL
LIFETIMES OF SULFUR. THESE INTERACTIONS HAVE
IMPLICATIONS FOR RADIATIVE FORCING

S04(c)/(S04(f)+S04(c)) March 05

S02 percent change March 05
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Song et al., JGR In press
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The Changing Air Quality of the Northern Hem
Paci fic Basin
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Contri bution of Fossil Fuel Burr
Tropospheric Ozone
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Asian Contribution to Total Ambient Ozone over Central Califomia
500mb (bhowr averages)
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Development and Application of Chemical Weather
Forecasting System over East Asia

ltsushi Uno (RIAM /Kyush u-U), Gregory R. Carmichael (UI/CGRER)

We are developing and applying an operational chemical weather forecasting system based on 3-D on-line
regional scale chemical transport model fully coupled with RAMS (Regional Atmospheric Modeling System, Pielke
et al, 1992). This system consists of several important components; i) operational global forecast data set access to
NCEP and JMA, ii) RAMS weather forecast for 72-96 hours based on the NCEP & JMA data as a lateral boundary
condition, iii) On-line chemical transport calculation of important chemical tracergISQ mineral dust, black
carbon and sea-salt, etc.) and iv) post-processing of “chemical weather forecast” results with 2/3-D graphics into the
WWW-page.

One of the main purposes of this system is to understand the regional transboundary air pollution and to
schedule/design the operational field monitoring campaign during the ACE(Aerosol Characterization Experiment)-
Asia and Trace-P intensive observations.
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Application & Model Validation

 ACE-Asia & TRACE-P Field Campaign

Planning
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Observation at Osaka and Model Results

Observed sulfate concentration at Osaka compared with model results show a
good agreement, and the intermittency during the winter season and the
periodicity typical of spring/fall rainy seasons, when the alternance of high/low
pressure systems characterize the meteorology of the region, is nicely reproduced
by the numerical model (RAMS on-line transport model).
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Tracer Species (2)

Several useful atmospheric tracer to
Understand the origin of air mass

Sea §:'-1It n
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12 bin Sea Salt from Gong et al.
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National Inst. Env. Studies Compact Mie Lidar
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The Future: A Close Integration of Measurements
and Models
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Table 3. Estimated Organic Mass Lraction (perceut) ol the Acrosol Due

to the Irreversible Uptake ol Acetone Onto the Mineral Acrosol Size

Distributions Summarized i Table 2°
Organie Mass Fraction, %

k, s 1 5 10 1 5 10 20)
Hour Hour Hour Day Days Days Days

104 16 50) 60 82 00 07 UK
10°% 2 1) 16 1] (4 82 ()
10 0.2 | 1.9 4.5 1Y) 3.8 48.3
107 0.02 ). ] 0.2 ().5 2.3 4.5 8.5

"The pscudo-licst-order reaction cocltlicients span the range ol values
calculated by using the measured acetone uptake rates as shown in Figure
14. These illustrative examples are tor 1 pph acetone; an acrosol volume
density of 2.8 107" cin' acrosol/em® air; and an acrosol mineral density of
1.5 g/em’,

"Exposure time.
TER (w press.
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able 6 The effect of increasing uptake coefficient (y) on atmospheric mixing ratios. The units are %,
culated relative to the no surface reaction case.

AO,™ ANO, ™ AHNO,™
f=10° 013 019 083
f=10° 039 039 186
o, =107 337 % 153

1o, =10° 128 18] 456




Transmission FT-IR spectroscopy of SIQ

and a-Al,O; In the presence of

gas phase carbonyls
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Summary of Laboratory Results

Acdone
Sample BET Mass | Total BET| Correction Yobs Y: BET
(mfg) | (9) (m’) Factor (n)
a-FeO, 2.3 0.0300 0.069 58 7810° | 1.3x 10*
y-FeO, 50 0.0040 0.200 167 12102 | 1.1x10*
a-Al,O, 14 0.0072 0.101 84 1510° | 2.0x10°
y-AlLO, 101 | 0.0110 1.111 930 8010° | 8.6x 10°
TiO, 50 0.0012 0.060 50 1810% | 3.6x10*
Sio, 200 0.0012 0.960 803 5010° | 6.2x 10°
CaO 3.9 0.0045 0.018 15 1810° | 1.2x 10*
MgO 14.9 | 0.0054 0.081 67 4010° | 6.0x10°
Carbon | 460 | 0.0010 0.460 385 | 2.4x10% | 6.2x10°
black
China 11 0.0154 0.169 142 18102 | 9.2x10°
Loess
Saharan | 3.1 1.5118 4.687 3922 1210* 3.1x10°
Sand
Acdal dhyde
Oxi @ BET Mass | Total BET| Correction Yobs Vi seT
(m?g) (@) (m?) Factor (n)
a-FeO, 2.3 0.0107 0.025 21 6010° | 2.9x 10°
a-Al, O, 14 0.0123 0.172 144 4%610° | 3.2x10°
y-Al,, O, 101 0.0190 1.919 1606 1.0410% | 6.5x 10°
TiO, 50 0.0019 0.095 79 7410° | 9.4x10°
SiO, -200 200 0.0053 1.060 887 6210° | 7.0x 10°
CaO 3.9 0.0047 0.018 15 45610°% | 3.0x 10*
MgO 14.9 0.0081 0.121 101 8:510° | 8.4x10°
Carbon 460 0.0008 0.368 308 2410% | 7.8x 10°
black
China 11 0.0031 0.034 29 1%10* | 5.2x 10°
Loess
Saharan 3.1 1.1849 3.673 3074 16102 | 4.9x10°
Sand

For acetone and acetaldehyde

4x10°<y<5x10*




Het er ogeneous Upt ake of

Layer-by-Layer Model
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Uptake of Acetaldehyde is First Order
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Summary of Combined Laboratory
and Modeling Study

Spectroscopic probes of gas-phase and adsorbed species along with
kinetic measurements provide the necessary information to evaluate
reactions of potential importance in the troposphere

— reaction mechanisms, surface coverage, saturation
— uptake coefficients

Diffusion of gases into powdered samples can have a very significant
effect on the measured uptake coefficient for powdered samples

— multiple collisions amplify the observed uptake
coefficient

Atmospheric implications of uptake measurements determined from bc
model analysis

— heterogeneous pathways are competitive with other
carbonyl loss mechanisms (e.g. reaction with OH radical)

) X-




Future Directions

In the Laboratory Studies:

scontinue to improve our efforts in measuring heterogeneous reaction kinetics on
particle surfaces;

sinvestigate heterogeneous reactions of atmospheric gases, especially nitrogen
oxides and VOCs, on mineral oxides, mineral dust and soot in greater detail as a
function of relative humidity and temperature;

«determine the effects of aerosol aging on the heterogeneous reactivity;

«determine the effects of solar light (hv) and increased complexity of reactant
mixtures (VOCs, NQ, and other trace atmospheric cases such as, @gether);

suse microscopic techniques such as atomic force microscopy, transmission and
scanning electron microscopy coupled with energy dispersive x-ray analysis to
study changes in particle morphology;

suse transmission and scanning electron microscopy coupled with energy
dispersive x-ray analysis for single particle analysis of authentic mineral dust
samples.



Future Directions

In Modeling Studies

scontinue to investigate the uptake of VOCs on aerosol surfaces;

further evaluate the relative importance of various surfaces and
reaction pathways;

eperform three-dimensional modeling analysis to provide a more
realistic representation of heterogeneous interactions under a broad-
range of chemical regimes (which vary both in space and time) and
to test hypothesis in and aid the analysis of ACP field studies.



STEM-II Modeling

Boundary Condition

Met. Data (
* Topo
* Landuse
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ECMWF )

Emission Data
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China Map
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On-line:
Emission markers:;
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sea salt emissions

Transport

3D advection
Vertical  Diff.
Cloud, Precip.

Forecasts of 3-D tracer
and aerosol fields; and
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analysis of observations

Reaction
Gas phase
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Aerosol
(size resolved;
kinetic and
thermodynamic

modules)
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Tabl e 3.

Ef fect of reaction ipry@dilon at nospheric mxing ratios when satur
are included.

A03nax ANO erax AHNO 3matx
Yip=10° -0. 13 -0. 19 -0. 83
Y\ =10* -0. 39 -0. 39 -1. 86
Y =10° -3. 37 -7. 50 -15. 3

Yip =107 -12. 8 -18. 1 45, 6
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Knudsen Cell Analysis
for Porous Samples

*Uptake depends on surface area of
first and underlying layers

yFirst Layer
‘ Yunderlying Layers
| ‘
O @OQQJZOH First Layer
OOOgOQOO O
%80@ OOA00
OO0 O

Linear Mass Regime (LMR)

Simulate Data *Surface saturation
*Diffusion

eConsider roughness factor to

account for increased number

of collisions

measured surface area )
, = Ager/4Tr
spherical surface area




Three-Dimensional Combined

Transport/Chemistry Analysis (STEM-III)
On/0Off Line Transport Model

Boundary Condition

Met. Data (ECMWF)
* Topo Transport
* Landuse 3D advection
oS5 T Vertical Diff.

Emission Data
RAINS-ASIA
China Map
Energy sectors,
fuels, LPS,
On-line:
Emission markers;
mineral and
sea salt emissions

; =1  modules)

Reaction
(zas phase
Aqua. phase

Aerosol
(s1ze resolved;
kinetic and
- thermodynamic .,

_; ¥ P
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Y - Y ' L

and aerosol fields; and
detailed process oriented
analysis of observations

Forecasts of 3-D tracer

Radiation/

Photolysis

TUV

4

3D Chemical Transport Model
STEM-OFLT (off-line transport)
RAMS-ONLT (on-line transport)




function of NQ exposure
(P =0.005to 1.0 Torr)
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Water adsorption oa-Al,O, following reaction of
HNO,
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Nitric Acid Uptake on a-Al,O,
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Knudsen Cell Analysis for
Porous Samples

*Uptake depends on surface area of firsdnd

underlying Fi%/t(?g;s,er
| yUnderIying Layers

v
O(\)JOE)%)QO & First Layer

GEBRER
Linear Mass Regime (LMR)

Simulate Data sSurface saturation
*Diffusion

eConsider roughness factor to account for

Increased number of collisions

measured surface area :
spherical surface area = Age/4TT




Initial Uptake Versus Mass

Plateau Region Observed at Higher Masses
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Knudsen Cell Data-N©O
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Nitrite and Nitrate on AlO; Particles from NO
Adsorption

1231
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e of Adsorbed LD in Surf
Reactions of Potential Atmospheric

Importance |

|. Heterogeneous Reaction of NQon SIG,
2NO,(g) + H,0 (a)J HONO (g)+ HNO,(a)

*HONO is produced

HONO is a source of OH radical,

The OH radical drives the daytime

chemistry of the troposphere
*H,0 is a reactant
*HNO, Is a surface-bound product

1Z

Il. Hete urtil this wor

Oxide andCaCQ, Particles
HNO,(g) + CaCG,J CO, (g) + Ca(NQ),+ H,O (a)

*H,0 Is a product (and medium for dissociation)

*|s the reaction limited to the particle surface?



Initial Uptake Coefficients of NO, and HNO,
Used inAtmospheric Models
- Surface Area and Roughness

Sample R
SIO, 1

a -Fe0, 1.3

TiO, 1

MgO 1.8
1CaO 1.7
1CaCQ 2.4

2Saharan Sand ?

China Loess 22

Adjyno,

not measurable
Ox 10
1x10

9 x 106

2 X 16
4x10

not measurable

R*1 x 20

4 x 10

1. Strong water dependence for HN@ptake

2. Large size distribution

Ad]. Yinos
6 x 10°
2 x 103
7 x 103
1 x10%
1x103
1 x 102
2 x 104
R*2 x 103

1x103
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