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Modeling Analysis:
The importance of these heterogeneous reactions involving mineral oxide and min

studied using a combined aerosol/gas-phase chemistry model in which multicompo
heterogeneous chemistry on the aerosol surface are explicitly included in the mode
Zhang, 1994; Zhang and Carmichael, 1999). In this model, aerosol interactions with 
arise through the adsorption of trace species and the gas-to-particle conversions 
the aerosol growth and surface heterogeneous reaction processes. The interactions b
are modeled using a combined thermodynamics and kinetics approach:
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where kj  is the overall mass-transfer coefficient, Ci  the adsorbed species 

concentration of the absorbing species  and Cj
e is the equilibrium gas-phase concen

equilibrium with the the surface adsobed species (this term can be related to surfa
the gas phase diffusion coefficient, Kn  is the dimensionless Knudsen number, F(r) 

surface of the aerosol particle with radius r in molecules cm-1 s-1, dn/dr is the
particles, and α is the accommodation coefficient (or sticking coefficient).



Experimental Considerations 

•

• Spectroscopic measurements to 

– Provide mechanistic information 
on the molecular level

– Need to have techniques that can detect 
gas-phase and surface- bound species 

• Kinetic measurements to provide 
quantitative information
– Determine uptake coefficients and 

reaction probabilities

• Provide data as input for global 
atmospheric models 

– Reaction probabilities, reaction 
mechanism, surface coverages 
(saturation)

       



Experimental Methods
Transmission FT-IR Spectroscopy

(to characterize gas-phase and surface-bound species)
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Transmission FT-IR Spectra of Carbonyl Comp
Adsorbed on Silica
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Transmission FT-IR Spectra of Carbonyl Comp
Adsorbed on αααα-Alumina
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Tabulated Values of the Initial Uptake Coe
Acetaldehyde, Acetone and Propionaldehyde

CH3 CHO CH3 COCH3 CH3CH2 CHO
SiO2 0.0029 0.0093 0.0042
Fe2O3 0.0021 0.0067 n. m.
CaO 0.0116 0.0074 n. m.
MgO 0.0074 0.0082 n. m.

αααα-Al2O3 0.0062 0.0065 0.0195
γγγγ-Al2O3 0.0131 n. m. n. m.
TiO2 0.0206 0.0230 0.0242

C-Black 0.0150 0.0232 0.0285

n. m. = not measured



Experimental Methods
Knudsen Cell Reactor

(used to determine uptake coefficients)
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Where
AH is the area of the aperture hole to the QMS
As is the geometric area of the reactive surface
Io is the calibrated mass spectrometer signal without the metal oxide 
particles exposed
Ir is the calibrated mass spectrometer signal with cover raised and the metal 
oxide particles exposed



Tabulated Values of the Initial Uptake Coe
Nitrogen Dioxide and Nitric Acid

*NO2 HNO 3

Fe2O3 3 ×××× 10-3 2 ×××× 10-2

China Loes 1 ×××× 10-3 1 ×××× 10-1

TiO2 8 ×××× 10-4 2 ×××× 10-1
αααα-Al2O3 4 ×××× 10-4 4 ×××× 10-2

MgO 4 ×××× 10-4 5 ×××× 10-1

CaO 2 ×××× 10-4 7 ×××× 10-2

SiO2 <1 ×××× 10-5 4 ×××× 10-3

*Step 1:
  NO2(g) →→→→ NO2(a)
  Step 2 (at ~30% coverage):
  NO2(g) + NO2(a) →→→→ NO3(a) + NO(g)

  Reaction Saturates at ~5×××× 1014 cm-2

**HNO3 (g) →→→→ HNO3(a)

Uptake Coefficients for HNO3 are
1-3 orders of magnitude lar
for NO2
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Motivation/Objectives:  The need to analyze ozone and aerosols together, and the lack of 
fundamental information on potentially important chemical processes, provide the motivation 
for this proposed work.  The importance of heterogeneous reactions in tropospheric ozone and 
aerosol formation, and their impact on O3-precursor relationships will be studied through a 
multidisciplinary approach which combines modeling and laboratory components.  The 
research is directed towards efforts to significantly enhance our understanding of one of the 
most uncertain areas of atmospheric chemistry, i.e., heterogeneous processes.  The combined 
laboratory and modeling studies will improve our basic understanding of the chemistry on 
aerosol surfaces, will demonstrate and elucidate the interactions and interrelationships between 
ozone and aerosol processes, will assess whether these processes can alter the O3-precursor 
relationships upon which present emission reduction strategies are based, and will provide 
needed scientific information regarding linkages between tropospheric ozone and secondary 
aerosol abatement.  The new laboratory data and the modeling efforts to predict the aerosol 
composition of both the inorganic and organic fractions, will also be of direct value to aerosol 
radiative forcing and climate change studies.

The specific objectives of this study are to:
• Evaluate the extent to which heterogeneous chemistry affects the photochemical oxidant   
cycle, particularly, tropospheric ozone formation;

• Conduct laboratory studies on heterogeneous reactions involving VOCs on aerosol 
surfaces; and

• Explore the sensitivity of ozone and aerosol composition to changes in precursor emissions 
on regional scales.

•
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